CONTENTS

<table>
<thead>
<tr>
<th>1. Methodology</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Research results</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Importance of science enquiry learning</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Can science enquiry help improve students?</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Barriers to science enquiry learning</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Science enquiry in the last 10 years</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Scope for experiments and practical work</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Health and safety issues</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Science investigations vs. other curriculum topics</td>
<td>9</td>
</tr>
<tr>
<td>2.8 The questionnaire</td>
<td>10</td>
</tr>
</tbody>
</table>
1. Methodology

ICM Research interviewed a random sample of 510 science teachers by telephone between 28th September and the 12th October 2005. Interviews were conducted in schools across the United Kingdom.

It should be remembered at all times that a sample and not the entire population of teachers has been interviewed. Consequently, all results are subject to sampling tolerances, which mean that not all differences are statistically significant.

We can, however, predict the variation between the sample results and the ‘true’ values (if everyone in the population had been interviewed) from knowledge of the size of the samples on which the results are based and the number of times answers are given. The confidence with which we can make this prediction is usually chosen to be 95% - that is, the chances are 95 times out of 100 that the ‘true’ value will fall within a specified range. The table below illustrates the predicted ranges for different sample sizes and the percentage results at the 95% confidence level.

<table>
<thead>
<tr>
<th>SAMPLE SIZE</th>
<th>SAMPLING TOLERANCES APPLICABLE TO %'S AT OR NEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% OR 90%</td>
</tr>
<tr>
<td></td>
<td>30% OR 70%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
</tr>
<tr>
<td>100 interviews</td>
<td>5.88%</td>
</tr>
<tr>
<td>510 interviews</td>
<td>2.60%</td>
</tr>
</tbody>
</table>

For example, with a sample size of 510 interviews where 50% (the worst case scenario as far as tolerances are concerned) give a particular answer, we can be 95% certain that the ‘true’ value will fall within the range of 4.3% from the sample result.

When results are compared between separate groups within a sample (say, between male and female teachers), different results may be obtained. The difference may be ‘real’ or it may occur by chance (because a sample rather than the entire population has been interviewed). To test if the difference is a real one, i.e. if it is ‘statistically significant’, we again have to know the size of the samples, the % giving a certain answer and the degree of confidence chosen. If we assume the 95% confidence level again, the differences between the results of two separate groups must be greater than the values given in the table below:

<table>
<thead>
<tr>
<th>SAMPLE SIZES TO BE COMPARED</th>
<th>DIFFERENCES REQUIRED TO BE STATISTICALLY SIGNIFICANT AT OR NEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% OR 90%</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
</tr>
<tr>
<td>100 and 100</td>
<td>8.3%</td>
</tr>
</tbody>
</table>
2. RESEARCH RESULTS

2.1 Importance of science enquiry learning

It should, perhaps, come as no surprise that science teachers are resolutely committed to the principle of practical and experiment-based science enquiry learning as part and parcel of wider science learning. Out of 510 science teachers surveyed, only 8 of them did NOT say that it is either very or quite important for students to learn in this way. As the chart reveals, the vast majority consider practical work to be ‘VERY’ important (84%) with a residual 14% saying it is ‘quite’ important, making the overall proportion saying ‘important’ an aggregate of 98%.

On this matter, like many others in this dataset, there is a high degree of consistency across different groups. The chart above demonstrates this in terms of teacher specialism, with physics (84%), biology (87%) and chemistry (88%) specialists concurring that it is ‘very’ important to more or less the same level. Consistency applies equally to teacher placement, with four in five comprehensive school science teachers (86%), specialist school teachers (83%) and teachers in ‘other’ schools (81%) all attaching high levels of importance.

Perhaps the only variation worth noting involves region, although extra caution is advised because the regional sub-sample size are very small. More teachers in the North West (92%) and Scotland (90%) say very important than elsewhere, but in two regions, the East Midlands (68%) and South West (79%) the proportion falls below the four in five mark.
2.2 Can science enquiry help improve students?

Most teachers consider science enquiry learning to have a significant impact on student performance and attainment. One again, nearly all believe this to be the case, with 99% saying the benefit is either significant (83%) or a little (16%).

<table>
<thead>
<tr>
<th></th>
<th>Yes - significant</th>
<th>Yes – a little</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>All teachers</td>
<td>83%</td>
<td>16%</td>
<td>1%</td>
</tr>
<tr>
<td>Biology specialist</td>
<td>87%</td>
<td>12%</td>
<td>1%</td>
</tr>
<tr>
<td>Physics specialist</td>
<td>79%</td>
<td>17%</td>
<td>2%</td>
</tr>
<tr>
<td>Chemistry specialist</td>
<td>83%</td>
<td>15%</td>
<td>1%</td>
</tr>
<tr>
<td>750 or less students</td>
<td>83%</td>
<td>16%</td>
<td>*%</td>
</tr>
<tr>
<td>751-1000</td>
<td>85%</td>
<td>13%</td>
<td>*%</td>
</tr>
<tr>
<td>1001+ students</td>
<td>80%</td>
<td>18%</td>
<td>2%</td>
</tr>
<tr>
<td>Specialist school</td>
<td>83%</td>
<td>14%</td>
<td>2%</td>
</tr>
<tr>
<td>Comprehensive</td>
<td>82%</td>
<td>17%</td>
<td>1%</td>
</tr>
<tr>
<td>Other school</td>
<td>85%</td>
<td>14%</td>
<td>1%</td>
</tr>
</tbody>
</table>

This view is solid across teacher types, although physics specialists are slightly less likely (79%) than biology or chemistry specialists to think the impact is significant. There is a minimal five-point variation across school size, and less – 3-points - across school type. Female teachers (85%) are 4-percentage points more likely to say there is a significant impact on performance than male teachers (81%); while teachers in the South East (93%) are most likely to think so, and those in the North East (71%) least likely to think so.

Similar conclusions can be drawn when the impact of science enquiry learning is extrapolated to problem-solving skills. In fact, more teachers (85%) think it helps students significantly improve problem-solving skills than think it significantly helped with student performance and attainment (83%). An additional 14% think problem solving skills are improved a little. When aggregated, a total of 99% of science teachers see a demonstrable benefit in science enquiry learning in terms of problem solving skills.
2.3 Barriers to science enquiry learning

Two in three science teachers (64%) suggest that the biggest barrier to more science enquiry work being undertaken in the classroom is quite simply a lack of time within the context of current curriculum arrangements. This rises to 68% among female science teachers, 71% among those aged 55+ and 92% among those teaching in Northern Ireland.

Biology teachers (64%) are slightly more concerned about the time issue than chemistry (61%) or physics 58% specialists, as are those in the very largest schools (67%) as opposed to smaller schools. Seven in ten (70%) science teachers in specialists schools mention the time constraint, compared to 67% in ‘other’ schools and 60% in comprehensives.

As the chart demonstrates, the time barrier is mentioned almost twice as often as the next most mentioned barrier to additional science enquiry learning in the classroom. Lack of resources/supplies was mentioned by one in three (34%) teachers, just a few more mentions than lack of appropriate equipment or space (31%).

One in five (21%) have concerns over health and safety, with one in seven saying that science enquiry learning has a lack of prominence in the current assessment arrangements, or simply that there is a lack of lab technicians to cover practical experiments.
2.4 Science enquiry in the last ten years
There is a feeling - although not shared by a majority of teachers - that the amount of science enquiry learning has increased over the last ten years. Four in ten (42%) are inclined to think so, but only slightly fewer (32%) take the opposite view, suggesting that generally speaking the amount undertaken has declined. One in five (20%) suggest that there has been no substantive change.

We might suspect that science teachers are only able to relate to their own application of practical work in the classroom, in which case an examination of different types of science teacher might be helpful. On this basis, it would appear that biology specialists (48% saying increased) are driving the impression that a greater level of practical work has been undertaken over the last ten years, compared as they are to only 40% of physics specialists and 42% of chemistry specialists. However, this does not work in reverse – with only 29% of chemistry specialists saying the level of practical work undertaken has decreased over the period. In fact, chemistry and physics specialists are more inclined to say that there has been no difference one way or the other. On this basis, there is no obvious driver for the plurality (42%) saying there has been an increase.

2.5 Scope for experiments and practical work
A previous question already identified the chief barrier to more practical science learning being time issues within the boundaries of the national curriculum. When prompted further on this matter, however, a clear majority did in fact suggest that at least some room is available for practical work to be conducted within science classrooms. Overall, almost six in ten (58%) believe there is ‘some’ scope, and a further 17% believe there is a ‘lot’ of scope for experiments and practical work within current curriculum and assessment requirements. In total,
therefore, three-quarters (75%) of science teachers think they could include experiments and practical work, with only 24% rejecting the scenario.

2.6 Health and safety issues

Health and safety issues do concern science teachers, with a total of 87% saying that (at least) once they have not allowed their students to undertake some form of experiment or practical work because current health and safety regulations prohibit or deter them from doing so. That is not to say it is a frequent occurrence – only one in ten (12%) say they are ‘often’ prohibited by health and safety regulations, but over half (52%) say it does happen ‘occasionally’. One in five (22%) say rarely and 13% of science teachers have never allowed health and safety issues to intervene.

This latter group are largely composed of the oldest teacher cohort, with 25% of over 55’s saying health and safety has never been a concern for them. One suspects that teachers within this group will have conducted experiments many times, and may have the experience to decide that health and safety issues are not as much of a concern for them as they might be for less experienced science teachers.

When it comes to health and safety advice and recommendations on practical experiments, six in ten teachers would turn first to CLEAPPS (Consortium of Local Education Authorities for the Provision of Science Services). In total 58% would do so, particularly those in specialist schools (64%) and those in Northern Ireland (89%) and Yorkshire & the Humber (85%).
Teaching colleagues in the same school (51%) are also a prominent point of contact, particularly for female (54%) and young teachers (62%), as well as those who specialise in biology (57%).

Other sources are used much less overall, with subject associations used by one in four (25%), national advice centres by 23% and teachers in other local schools by 17%. Other mentions are shown on the chart below.

2.7 Science investigation vs. other curriculum topics

Finally, teachers were asked whether they thought that students who show considerable interest in particular scientific investigation should be allowed to pursue them even if it means other topics receive less attention. In general, there was firm support for this concept, with more than twice as many science teachers (56%) saying they should rather than should not (24%).

However, majority support for the idea rather disguises the fact that the strength of support for it is actually rather low. Whilst 56% do agree, only 18% ‘agree strongly’ but many more (37%) ‘tend to agree’. The same applies to those who disagree – 19% tend to disagree while 5% disagree strongly. Clearly this is not a matter which is particularly divisive.

Only one or two clear differences emerge at sub-sample level. Teachers in the smaller schools (29% disagree) perhaps feel there is insufficient resource to cater for students who wish to adopt specialist practical learning; whilst older teachers disagree (43% 55+) than agree (35%). Beyond this, the consistency that characterised earlier questions is also evident here.
2.8 NESTA – SCIENCE TEACHERS QUESTIONNAIRE

Hello. My name is and I work for ICM research, an independent market research organisation. We are carrying out a survey on behalf of the NESTA, the National Endowment for Science, Technology & the Arts. This survey will allow NESTA to better understand science teachers views on scientific enquiry within the classroom ie. experimental or investigative science. Your views are very important to us and we would be grateful if you could spend five minutes answering some simply questions about science teaching and learning. Of course, anything you say will be completely confidential.

QS1 First of all, can I confirm that you yourself currently teach a science related subject?

<table>
<thead>
<tr>
<th></th>
<th>CONTINUE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>CLOSE</td>
<td></td>
</tr>
<tr>
<td>Don’t know</td>
<td>CLOSE</td>
<td></td>
</tr>
</tbody>
</table>

QS2 What is your main teaching discipline or specialism?

<table>
<thead>
<tr>
<th>Specialism</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>1</td>
</tr>
<tr>
<td>Physics</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Other science subject</td>
<td>4</td>
</tr>
<tr>
<td>No specialism</td>
<td>5</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>

QS3 Record gender (one only)

<table>
<thead>
<tr>
<th>Gender</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>2</td>
</tr>
</tbody>
</table>

QS4 Which age group do you fall into?

<table>
<thead>
<tr>
<th>Age Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 24 years</td>
<td>1</td>
</tr>
<tr>
<td>25-34</td>
<td>2</td>
</tr>
<tr>
<td>35-44</td>
<td>3</td>
</tr>
<tr>
<td>45-54</td>
<td>4</td>
</tr>
<tr>
<td>55-64</td>
<td>5</td>
</tr>
<tr>
<td>65+</td>
<td>6</td>
</tr>
<tr>
<td>Refuse</td>
<td>7</td>
</tr>
</tbody>
</table>
QS5 Record nation/region from sample file

<table>
<thead>
<tr>
<th>Nation/Region</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Midlands</td>
<td>1</td>
</tr>
<tr>
<td>East of England</td>
<td>2</td>
</tr>
<tr>
<td>North East</td>
<td>3</td>
</tr>
<tr>
<td>North West</td>
<td>4</td>
</tr>
<tr>
<td>London</td>
<td>5</td>
</tr>
<tr>
<td>South East</td>
<td>6</td>
</tr>
<tr>
<td>South West</td>
<td>7</td>
</tr>
<tr>
<td>Yorkshire & the Humber</td>
<td></td>
</tr>
<tr>
<td>West Midlands</td>
<td></td>
</tr>
<tr>
<td>Wales</td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td></td>
</tr>
</tbody>
</table>

CHECK QUOTAS

MAIN QUESTIONNAIRE

Q1 How important do you think science enquiry learning (by that I mean experiments and practical work) should be in science learning? Would you say...READ OUT

<table>
<thead>
<tr>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very important</td>
<td>1</td>
</tr>
<tr>
<td>Quite important</td>
<td>2</td>
</tr>
<tr>
<td>Neither important nor unimportant</td>
<td>3</td>
</tr>
<tr>
<td>Not very important</td>
<td>4</td>
</tr>
<tr>
<td>Not important at all</td>
<td>5</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>

Q2 Do you think science enquiry learning can help improve the performance and attainment of your students? READ OUT

<table>
<thead>
<tr>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, significantly</td>
<td>1</td>
</tr>
<tr>
<td>Yes, a little</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>

Q3 Do you think science enquiry learning can help to improve the problem-solving skills of your students? READ OUT

<table>
<thead>
<tr>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, significantly</td>
<td>1</td>
</tr>
<tr>
<td>Yes, a little</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>
Q4 Which two or three of the following do you think are the most important barriers to more science enquiry work being undertaken in classrooms? ROTATE. READ OUT. CODE MAXIMUM THREE RESPONSES

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of appropriate equipment/space</td>
<td>1</td>
</tr>
<tr>
<td>Lack of resources for supplies</td>
<td>2</td>
</tr>
<tr>
<td>Lack of lab technicians</td>
<td>3</td>
</tr>
<tr>
<td>Lack of time in current curriculum arrangements</td>
<td>4</td>
</tr>
<tr>
<td>Lack of prominence in current assessment arrangements</td>
<td>5</td>
</tr>
<tr>
<td>Concerns over health and safety</td>
<td>6</td>
</tr>
<tr>
<td>Lack of health and safety advice and information</td>
<td>7</td>
</tr>
<tr>
<td>Lack of sufficient experience in scientific discipline</td>
<td>8</td>
</tr>
<tr>
<td>Something else</td>
<td>9</td>
</tr>
<tr>
<td>DO NOT READ OUT: None of the above</td>
<td>0</td>
</tr>
<tr>
<td>Don’t know</td>
<td>X</td>
</tr>
</tbody>
</table>

Q5 In general, do you think that the amount of science enquiry work undertaken in classrooms over the last ten years or so has...

<table>
<thead>
<tr>
<th>Change</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased significantly</td>
<td>1</td>
</tr>
<tr>
<td>Increased slightly</td>
<td>2</td>
</tr>
<tr>
<td>Stayed about the same</td>
<td>3</td>
</tr>
<tr>
<td>Decreased slightly</td>
<td>4</td>
</tr>
<tr>
<td>Decreased significantly</td>
<td>5</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>

Q6 How much room for experiments and practical work do you think the current curriculum and assessment requirements allow teachers?

<table>
<thead>
<tr>
<th>Scope</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A lot of scope</td>
<td>1</td>
</tr>
<tr>
<td>Some scope</td>
<td>2</td>
</tr>
<tr>
<td>Little scope</td>
<td>3</td>
</tr>
<tr>
<td>None at all</td>
<td>4</td>
</tr>
<tr>
<td>Don’t know</td>
<td>5</td>
</tr>
</tbody>
</table>

Q7 Are there sometimes experiments and practical work that you would like your students to be allowed to do in class but feel you can’t because of current health and safety advice and recommendations?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes – often</td>
<td>1</td>
</tr>
<tr>
<td>Yes – occasionally</td>
<td>2</td>
</tr>
<tr>
<td>Yes - rarely</td>
<td>3</td>
</tr>
<tr>
<td>No - never</td>
<td>4</td>
</tr>
<tr>
<td>Don’t know</td>
<td>5</td>
</tr>
</tbody>
</table>
Q8 To which sources, if any, would you go to get advice and recommendations regarding the health and safety aspect of experiments or practical activities? READ OUT

<table>
<thead>
<tr>
<th>Source</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department for Education and Skills</td>
<td>1</td>
</tr>
<tr>
<td>Subject associations</td>
<td>2</td>
</tr>
<tr>
<td>National advice services</td>
<td>3</td>
</tr>
<tr>
<td>Teaching colleagues in your school</td>
<td>4</td>
</tr>
<tr>
<td>Teachers in other local schools</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
</tr>
<tr>
<td>Don’t know</td>
<td>7</td>
</tr>
</tbody>
</table>

Q9 Do you agree or disagree with the following statement? “Students who are interested and motivated by particular scientific investigations should be allowed to pursue them even if it may mean that other topics receive less attention”. Do you… READ OUT

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree strongly</td>
<td>1</td>
</tr>
<tr>
<td>Tend to agree</td>
<td>2</td>
</tr>
<tr>
<td>Neither agree nor disagree</td>
<td>3</td>
</tr>
<tr>
<td>Tend to disagree</td>
<td>4</td>
</tr>
<tr>
<td>Disagree strongly</td>
<td>5</td>
</tr>
<tr>
<td>Don’t know</td>
<td>6</td>
</tr>
</tbody>
</table>

CLASSIFICATION

Q10 What is your position in the school?

<table>
<thead>
<tr>
<th>Position</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head teacher</td>
<td>1</td>
</tr>
<tr>
<td>Deputy head teacher</td>
<td>2</td>
</tr>
<tr>
<td>Other senior management</td>
<td>3</td>
</tr>
<tr>
<td>Head of department (curriculum area)</td>
<td>4</td>
</tr>
<tr>
<td>Head of Year (year co-ordinator)</td>
<td>5</td>
</tr>
<tr>
<td>Deputy head of department or year group</td>
<td>6</td>
</tr>
<tr>
<td>Teacher with other responsibility point(s)</td>
<td>7</td>
</tr>
<tr>
<td>Teacher</td>
<td>8</td>
</tr>
</tbody>
</table>

Q11 How many students are currently in your school? CODE ONE

<table>
<thead>
<tr>
<th>Number of Students</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 125</td>
<td>1</td>
</tr>
<tr>
<td>126-250</td>
<td>2</td>
</tr>
<tr>
<td>251-500</td>
<td>3</td>
</tr>
<tr>
<td>501-750</td>
<td>4</td>
</tr>
<tr>
<td>751-1,000</td>
<td>5</td>
</tr>
<tr>
<td>1,001-1,500</td>
<td>6</td>
</tr>
<tr>
<td>Over 1,501</td>
<td>7</td>
</tr>
<tr>
<td>Don’t know</td>
<td>8</td>
</tr>
</tbody>
</table>
ASK ONLY IF IN ENGLAND, WALES OR NORTHERN IRELAND:
Q12a Which key stages do you teach? CODE ALL THAT APPLY

<table>
<thead>
<tr>
<th>Key Stage</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS1</td>
<td>1</td>
</tr>
<tr>
<td>KS2</td>
<td>2</td>
</tr>
<tr>
<td>KS3</td>
<td>3</td>
</tr>
<tr>
<td>KS4</td>
<td>4</td>
</tr>
<tr>
<td>KS5</td>
<td>5</td>
</tr>
</tbody>
</table>

ASK IF IN SCOTLAND:
Q12b Which age ranges do you teach? CODE ALL THAT APPLY

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>1</td>
</tr>
<tr>
<td>7-11</td>
<td>2</td>
</tr>
<tr>
<td>11-14</td>
<td>3</td>
</tr>
<tr>
<td>14-16</td>
<td>4</td>
</tr>
<tr>
<td>16-18</td>
<td>5</td>
</tr>
</tbody>
</table>

ASK ALL:
Q13 Which of these applies to your school? READ OUT. CODE ONE

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialist</td>
<td>1</td>
</tr>
<tr>
<td>Academy</td>
<td>2</td>
</tr>
<tr>
<td>Comprehensive</td>
<td>3</td>
</tr>
<tr>
<td>Grammar</td>
<td>4</td>
</tr>
<tr>
<td>Special and PRU</td>
<td>5</td>
</tr>
<tr>
<td>Other (specify)</td>
<td></td>
</tr>
</tbody>
</table>

Q15 Finally, how many years have you been in the teaching profession? WRITE IN

Thank and close